首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Improvements in navigation using SeaBeam crossing errors
Authors:Clyde E Nishimura  Donald W Forsyth
Institution:(1) Department of Geological Sciences, Brown University, 02912 Providence, RI, USA
Abstract:Adjustments to satellite constrained navigation are required to match SeaBeam bathymetric data at track crossings due to errors in dead reckoning and inaccuracies in satellite fixes. By shifting one of the SeaBeam swaths involved in a track crossing relative to the other and calculating the sum of the squares of the differences in bathymetry within the area of overlapping coverage, we map a two-dimensional error surface whose minimum corresponds to the best estimate of the correction to navigation required at the crossing point. Estimates of the covariance of this correction are derived from the error surface. We employ the curve fitting technique of Tarantola and Valette (1982) to invert for a smooth correction function to a starting model of the position of the ship as a function of time. This technique incorporates formal errors assigned to dead reckoning, satellite fixes, and the shifts required to match bathymetric swaths at crossing points in a simultaneous inversion for the correction function for all tracks within the study area.In a test of the method in a study area on the southern Mid-Atlantic Ridge, a data set involving two cruises, 30 days of SeaBeam data, and 753 track crossings, we found that crossing SeaBeam swaths can potentially resolve the relative position of the ship on the two tracks to within 30 to 70 m. The inversion procedure yielded a much better constrained navigation function and much improved match of bathymetry. The final model of the navigation fit crossing shifts about as well as satellite data (with respect to their assigned data errors) with the RMS value of the crossing shifts decreasing from 1200 m in the original satellite-constrained navigation to 200 m in the final solution. However, the potential resolution of position using SeaBeam swaths was not fully achieved in the solution because there are systematic bathymetric artifacts in SeaBeam data, multiple local minima in the error surfaces in highly lineated topography, inadequate dead reckoning data, occasional bad satellite fixes, and limitations on the short period corrections allowed in the model.
Keywords:SeaBeam  navigation  inversion
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号