首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ab initio investigation into the elasticity of ultrahigh-pressure phases of SiO2
Authors:Arnaud Metsue  Taku Tsuchiya
Institution:(1) Geodynamics Research Center, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
Abstract:In this study, we report the elastic properties of three ultrahigh-pressure phases of SiO2: pyrite, cotunnite and Fe2P types between 300 and 1,500 GPa calculated by means of the density functional ab initio method. It is generally thought that materials tend to be more compact and isotropic with increasing pressure. These three ultrahigh-pressure phases of silica are mechanically stable in the investigated pressure range according to the Born criteria, while the cotunnite and Fe2P types are unstable at lower pressure. The elastic azimuthal anisotropy of these ultrahigh-pressure phases of silica shows that all the structures counterintuitively have considerable anisotropies even at multimegabar pressures. Among the three investigated structures, the cotunnite type of SiO2 is the most elastically anisotropic phase due to a soft compression along the b axis combined with a large distortion of the polyhedrons that make the structure. This might also be related to its thermodynamic unfavorability compared to the Fe2P type under extreme pressure condition. The bond property analyses clearly show that the Si–O bond remains an ionic-covalent mixed bond even at multimegabar pressures with an invariable ionicity with pressure. This argument can explain the monotonously pressure dependence of the elastic anisotropy in the case of pyrite, while the changes in the velocity distribution patterns out of the thermodynamic instability range largely contribute to those of the cotunnite and Fe2P types.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号