首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Chemical and physical properties of iron hydroxide precipitates associated with passively treated coal mine drainage in the Bituminous Region of Pennsylvania and Maryland
Institution:1. Università degli Studi di Milano, Department of Chemistry, Via Golgi 19, 20133 Milan, Italy;2. Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Via Mancinelli 7, 20131 Milan, Italy
Abstract:Changes in precipitate mineralogy, morphology, and major and trace element concentrations and associations throughout 5 coal mine drainage (CMD) remediation systems treating discharges of varying chemistries were investigated in order to determine the factors that influence the characteristics of precipitates formed in passive systems. The 5 passive treatment systems sampled in this study are located in the bituminous coal fields of western Pennsylvania and northern Maryland, and treat discharges from Pennsylvanian age coals. The precipitates are dominantly (>70%) goethite. Crystallinity varies throughout an individual system, and lower crystallinity is associated with enhanced sorption of trace metals. Degree of crystallinity (and subsequently morphology and trace metal associations) is a function of the treatment system and how rapidly Fe(II) is oxidized, forms precipitates, aggregates and settles. Precipitates formed earlier in the passive treatment systems tend to have the highest crystallinity and the lowest concentrations of trace metal cations. High surface area and cation vacancies within the goethite structure enable sorption and incorporation of metals from coal mine drainage-polluted waters. Sorption affinities follow the order of Zn > Co  Ni > Mn. Cobalt and Ni are preferentially sorbed to Mn oxide phases when these phases are present. As pH increases in the individual CMD treatment systems toward the pHpzc of goethite, As sorption decreases and transition metal (Co, Mn, Ni and Zn) sorption increases. Sulfate, Na and Fe(II) concentrations may all influence the sorption of trace metals to the Fe hydroxide surface. Results of this study have implications not only for solids disposal and resource recovery but also for the optimization of passive CMD treatment systems.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号