首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Scenarios of Seismic Risk in the United Arab Emirates,an Approximate Estimate
Authors:Wyss  Max  Al-Homoud  Azm S
Institution:(1) World Agency of Planet, Monitoring and Earthquake, Risk Reduction, Geneva, Switzerland;(2) School of Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
Abstract:We estimate the losses due to 10 scenario earthquakes in 150 settlements of the United Arab Emirates (UAE). For southern Iran, we use four source zones and the maximum magnitudes in them as determined by GSHAP (7.2 le M le 8.1). For six local scenario earthquakes, we use the range 5.5 le M le 6.5, place the sources mainly on mapped faults and vary the distance to major cities from 10 to 60 km. In the test case of the Masafi earthquake (M5, 11 March 2002), the method and data bank we use yield the correct results, suggesting that our approach to the problem is valid for the UAE. The sources in Iran are expected to cause only minor damage, except for an M8.1 earthquake in the Makran region. For such an event we expect some deaths, several hundred injured and a loss of 3–6% of the value to the building stock in the northeastern UAE, including Oman. The losses for local scenarios with epicenters in the unpopulated areas of the UAE and for scenarios with M < 5.8 are estimated to be minor. Because the two major mapped faults run through several of the large cities, scenarios with short epicentral distances from cities have to be considered. Scenarios with M6 near cities lead to estimates of about 1000 ± 500 deaths, and several thousand injured. Most buildings are expected to be damaged to a moderate degree and the loss to buildings is estimated around 1/4of their value. If the magnitude should reach 6.5, the losses to humans and to building value could be staggering. These estimates are approximate because: (1) there exists no local seismograph network that could map active faults by locating microseismicity; (2) there exist no historically old buildings that could serve as tests for effects due to strong ground motion in the past; (3) there exist no microzonation of the subsurface properties in this region of unconsolidated building ground; (4) there exist no detailed inventory of building fragility. Nevertheless, our conclusion that there exists a substantial seismic risk in the UAE is reliable, because our method yields accurate results in the cases of earthquakes with known losses during the last several decades in the Middle East.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号