首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Crustal thickening processes in the Central Andes and the different natures of the Moho-discontinuity
Institution:1. V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russia;2. A.P. Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, ul. Favorskogo 1A, Irkutsk, 664033, Russia;3. Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, pr. Akademicheskii 2/4, Tomsk, 634021, Russia;4. University of Tokyo, Tokyo 113-0032, Japan;5. Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia;1. Department of Chemistry, Stanford University, United States;2. Department of Geological Sciences, Stanford University, United States
Abstract:New seismic data from the Central Andes allow us to clarify the crustal structure of this mountain chain and to address the problem of crustal thickening. Evidence for the deep crustal root can be observed in both gravimetric and seismological data. Crustal structure and composition change significantly from east to west. In the eastern part of the backarc the Moho discontinuity is clearly recognisable. However only poor Moho arrivals are observed by active seismic measurements beneath the Altiplano and the Western Cordillera where broad-band seismology data indicate such a discontinuity. In the Precordillera, a pronounced discontinuity is detected at a depth of 70 km. Along the coast, the oceanic Moho is developed at a depth of 40 km. There are several processes which can change the petrological and petrophysical properties of the rocks forming the crust. Variations of the classical Moho discontinuity are presented which do not correspond to the petrological crust/mantle boundary. Tectonic shortening in the backarc is the dominant process contributing to at least 50–55% to the root formation along 21°S. In the forearc and arc, hydration of the mantle wedge produced ≈15–20% of crustal thickening. Magmatic thickening and tectonic erosion contributed only ≈5%. The other ≈25% is not yet explained.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号