首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Terrain generalization with line integral convolution
Authors:Bernhard Jenny
Institution:1. Faculty of Information Technology, Monash University , Melbourne, Australia bernie.jenny@monash.eduORCID Iconhttps://orcid.org/0000-0001-6101-6100
Abstract:ABSTRACT

Line integral convolution is a technique originally developed for visualizing vector fields, such as wind or water directions, that places densely packed lines following the direction of movement. Geisthövel and Hurni adapted line integral convolution to terrain generalization in 2018. Their method successfully removes details and retains sharp mountain ridges; it is particularly suited for creating generalized shaded relief. This paper extends line integral convolution generalization with a series of enhancements to reduce spurious artifacts, accentuate mountain ridges, control the level of detail in mountain slopes, and preserve sharp transitions to flat areas. The enhanced line integral convolution generalization effectively removes excessive terrain details without changing the position of terrain features. Sharp mountain ridgelines are accentuated, and transitions to flat waterbodies and valley bottoms are preserved. Shaded relief imagery derived from generalized elevation models is visually pleasing and resembles manually produced shaded relief.
Keywords:Terrain generalization  line integral convolution  shaded relief  curvature-adaptive Gaussian blurring
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号