首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Set-up of deep circulation in multi-level numerical models
Authors:Nobuo Suginohara  Masao Fukasawa
Institution:(1) Geophysical Institute, Faculty of Science, University of Tokyo, Yayoi, Bunkyo-ku, 113 Tokyo, Japan;(2) Ocean Research Institute, University of Tokyo, 1-15-1, Minamidai, Nakano-ku, 164 Tokyo, Japan
Abstract:The present study investigates the way an ocean filled with homogeneous warm water is cooled by prescribing cold water formation inside the ocean in the southern part of the southern hemisphere using multi-level numerical models. Cooling of the whole ocean starts with introduction of the cold water from the formation region into the deepest part of the ocean in the equatorial and eastern boundary regions by Kelvin wave-type density currents. The cold water along the eastern boundary extends westward as a Rossby wave-type density current setting up an interior poleward flow, and hits the western boundary to form a northward flowing boundary current in the northern hemisphere. Only then does the western boundary current cross the equator. Cooling of the rest of the ocean basin is accomplished by upwellings in the interior and also along the coasts. During this introduction the cold water is mixed with surrounding warm waters, and the thermocline, rather than forming just below the top level where heating is imposed, tends to spread down to deeper depths. Consequently the circulation at a steady state has a significant vertical structure such that the maximum upwelling in the interior occurs in the mid-depths, and only the deeper part of the deep ocean yields the Stommel and Arons circulation pattern. In the equatorial region higher vertical mode motions dominate, and a set of alternating zonal jets forms along the equator.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号