首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Chronology, Petrology and Isotope Geochemistry of the Erro-Tobbio Peridotites (Ligurian Alps, Italy): Records of Late Palaeozoic Lithospheric Extension
Authors:RAMPONE  E; ROMAIRONE  A; ABOUCHAMI  W; PICCARDO  G B; HOFMANN  A W
Institution:1 DIPARTIMENTO PER LO STUDIO DEL TERRITORIO E DELLE SUE RISORSE, UNIVERSITÀ DI GENOVA, CORSO EUROPA 26, I-16132 GENOVA, ITALY
2 MAX PLANCK INSTITUT FÜR CHEMIE, POSTFACH 3060, D-55020 MAINZ, GERMANY
Abstract:Mantle peridotites from the Erro–Tobbio (ET) ophioliticunit (Voltri Massif, Ligurian Alps) record a tectono-metamorphicdecompressional evolution, indicated by re-equilibration fromspinel- to plagioclase- to amphibole-facies conditions, andprogressive deformation from granular to tectonite to mylonitefabrics. The peridotites are considered to represent subcontinentallithospheric mantle that was tectonically denuded during riftingand opening of the Jurassic Ligurian Tethys ocean, similar tothe Northern Apennine (External Ligurides) ophiolitic peridotites.We performed chemical and isotopic investigations on selectedgranular and tectonite spinel peridotites and plagioclase tectonitesand mylonites, with the aim of defining the nature of the mantleprotoliths, and to date the onset of exhumation of the ET peridotites.Spinel- and plagioclase-bearing tectonites and mylonites exhibitheterogeneous bulk-rock major and trace element composition,despite rather homogeneous mineral chemistry, thus indicatingthat the ET mantle protoliths record a composite history ofpartial melting and melt migration by reactive porous flow.The lack of correlation between the observed geochemical heterogeneityand the structural type (granular, tectonite, mylonite) indicatesthat the inferred reactive porous flow event preceded the exhumation-relatedlithospheric history of the Erro–Tobbio mantle. The tectono-metamorphicevolution caused systematic chemical changes in minerals: (1)Al decrease in orthopyroxene; (2) Al decrease, and Cr and Tiincrease in spinels; (3) Al and Sr decrease, Cr, Ti, Zr, Sc,V and middle to heavy rare earth element increase and developmentof a negative Eu anomaly in clinopyroxene. The studied sampleshave Nd isotope compositions consistent with a mid-ocean ridgebasalt mantle reservoir. Sm/Nd isotope data on plagioclase andclinopyroxene separates (and corresponding whole rocks) fromtwo plagioclase peridotites, representative of the plagioclase-bearingmylonitic extensional shear zone, have yielded ages of 273 ±16 Ma and 313 ± 16 Ma, for the plagioclase-facies recrystallizationstage, significantly older than the expected Jurassic age. Thisindicates that the Erro–Tobbio peridotites represent subcontinentallithospheric mantle that was tectonically exhumed from spinel-faciesdepths to shallower lithospheric levels during Late Carboniferous–Permiantimes. Our results are consistent with the previously documentedevidence for an extensional regime in the Europe–Adrialithosphere during Late Palaeozoic time, and they representthe first record that extensional mechanisms were also activeat lithospheric mantle levels. KEY WORDS: plagioclase-bearing peridotites; subcontinental lithospheric mantle; mantle exhumation; Sm/Nd dating
Keywords:: plagioclase-bearing peridotites  subcontinental lithospheric mantle  mantle exhumation  Sm/Nd dating
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号