首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Intensity Evolution of Zonal Shear Line over the Tibetan Plateau in Summer: A Perspective of Divergent and Rotational Kinetic Energies
Authors:Xiaohong BAO  Xiuping YAO
Abstract:Based on the ERA5 reanalysis datasets during 1980–2019, a total of eleven zonal shear lines (ZSLs) that caused heavy precipitation and lasted more than 60 hours over the Tibetan Plateau in summer are selected for composite analysis. By decomposing the kinetic energy (K) near the ZSL into divergent and rotational kinetic energies (KD and KR) and the kinetic energy of interaction between the divergent wind and the rotational wind (KRD), the influence of the rotational and divergent winds on the evolution of the ZSL intensity is investigated from the perspective of KD and KR. The main results are as follows. The ZSL is a comprehensive reflection of rotation and convergence. The intensity evolution of ZSL is essentially synchronized with those of K, KR, and KRD but lags behind KD by about three hours. The enhancement of K is mainly contributed by KR, which is governed by the conversion from KD to KR. Furthermore, the increase in the conversion from KD to KR is controlled by the geostrophic effect term Af, which is determined by the joint enhancement of the zonal rotational and meridional divergent wind components (uR and vD). Therefore, the joint enhancement of uR and vD controls the increase of the ZSL intensity, leading to increased precipitation.
Keywords:zonal shear line over the Tibetan Plateau  intensity evolution  divergent and rotational kinetic energies  joint action of the zonal rotational and meridional divergent wind components
点击此处可从《大气科学进展》浏览原始摘要信息
点击此处可从《大气科学进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号