首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Phlogopite and quartz lamellae in diamond‐bearing diopside from marbles of the Kokchetav massif,Kazakhstan: exsolution or replacement reaction?
Authors:L F DOBRZHINETSKAYA  RWIRTH  D RHEDE  Z LIU  H W GREEN
Institution:Institute of Geophysics &Planetary Physics, Department of Earth Sciences, University of California at Riverside, Riverside, 92521 CA, USA ();
Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, 3.3 Chemistry and Physics of Geomaterials, Telegrafenberg, D14473 Potsdam, Germany;
Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC, USA
Abstract:Exsolution lamellae of pyroxene in garnet (grt), coesite in titanite and omphacite from UHPM terranes are widely accepted as products of decompression. However, interpretation of oriented lamellae of phyllosilicates, framework silicates and oxides as a product of decompression of pyroxene is very often under debate. Results are presented here of FIB‐TEM, FEG‐EMP and synchrotron‐assisted infrared (IR) spectroscopy studies of phlogopite (Phlog) and phlogopite + quartz (Qtz) lamellae in diamond‐bearing clinopyroxene (Cpx) from ultra‐high pressure (UHP) marble. These techniques allowed collection of three‐dimensional information from the grain boundaries of both the single (phlogopite), two‐phase lamellae (phlogopite + quartz), and fluid inclusions inside of diamond included in K‐rich Cpx and understanding their relationships and mechanisms of formation. The Cpx grains contain in their cores lamellae‐I, which are represented by topotactically oriented extremely thin lamellae of phlogopite (that generally are two units cell wide but locally can be seen to be somewhat broader) and microdiamond. The core composition is: (Ca0.94K0.04Na0.02) (Al0.06Fe0.08Mg0.88) (Si1.98Al0.02)O6.00. Fluid inclusions rich in K and Si are recognized in the core of the Cpx, having no visible connections to the lamellae‐I. Lamellar‐II inclusions consist of micron‐size single laths of phlogopite and lens‐like quartz or slightly elongated phlogopite + quartz intergrowths; all are situated in the rim zone of the Cpx. The composition of the rim is (Ca0.95Fe0.03Na0.02) (Al0.05Fe0.05Mg0.90)Si2O6, and the rim contains more Ca, Mg then the core, with no K there. Such chemical tests support our microstructural observations and conclusion that the phlogopite lamellae‐I are exsolved from the K‐rich Cpx‐precursor during decompression. It is assumed that Cpx‐precursor was also enriched in H2O, because diamond included in the core of this Cpx contains fluid inclusions. The synchrotron IR spectra of such diamond record the presence of OH? stretching and H2O bending motion regions. Lamellar‐II inclusions are interpreted as forming partly because of modification of the lamellae‐I in the presence of fluid enriched in K, Fe and Si during deformation of the host diopside; the latter is probably related to the shallower stage of exhumation of the UHP marble. This study emphasizes that in each case to understand the mechanism of lamellar inclusion formation more detailed studies are needed combining both compositional, structural and three‐dimensional textural features of lamellar inclusions and their host.
Keywords:decompression and fluid  diamond  K–H-rich diopside  phlogopite exsolution  ultra-high pressure metamorphism
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号