首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experimental and numerical investigations on CO2 injection and enhanced gas recovery effects in Altmark gas field (Central Germany)
Authors:Leonhard Ganzer  Viktor Reitenbach  Dieter Pudlo  Daniel Albrecht  Arron Tchouka Singhe  Kilian Nhungong Awemo  Joachim Wienand  Reinhard Gaupp
Institution:1. Institute of Petroleum Engineering, Clausthal University of Technology, 38678, Clausthal-Zellerfeld, Germany
2. Institute of Earth Sciences, Friedrich Schiller University Jena, 07749, Jena, Germany
3. RWE Dea AG, 22297, Hamburg, Germany
Abstract:The feasibility of CO2 storage and enhanced gas recovery (EGR) effects in the mature Altmark natural gas field in Central Germany has been studied in this paper. The investigations were comprehensive and comprise the characterization of the litho- and diagenetic facies, mineral content, geochemical composition, the petrophysical properties of the reservoir rocks with respect to their potential reactivity to CO2 as well as reservoir simulation studies to evaluate the CO2 wellbore injectivity and displacement efficiency of the residual gas by the injected CO2. The Rotliegend sediments of the Altmark pilot injection area exhibit distinct mineralogical, geochemical, and petrophysical features related to litho- and diagenetic facies types. The reservoir rock reactivity to CO2 has been studied in autoclave experiments and associated effects on two-phase transport properties have been examined by means of routine and special core analysis before and after the laboratory runs. Dissolution of calcite and anhydrite during the short-term treatments leading to the enhancements of permeability and porosity as well as stabilization of the water saturation relevant for CO2 injection have been observed. Numerical simulation of the injection process and EGR effects in a sector of the Altmark field coupled with a wellbore model revealed the possibility of injecting the CO2 gas at temperatures as low as 10 °C and pressures around 40 bar achieving effective inflow in the reservoir without phase transition in the wellbore. The small ratio of injected CO2 volume versus reservoir volume indicated no significant EGR effects. However, the retention and storage capacity of CO2 will be maximized. The migration/extension of CO2 varies as a function of heterogeneity both in the layers and in the reservoir. The investigation of CO2 extension and pressure propagation suggested no breakthrough of CO2 at the prospective production well during the 3-year injection period studied.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号