首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Inhomogeneous distribution of REE in scheelite and dynamics of Archaean hydrothermal systems (Mt. Charlotte and Drysdale gold deposits, Western Australia)
Authors:Joël Brugger  Yann Lahaye  Sylvie Costa  David Lambert  Roger Bateman
Institution:(1) VIEPS, Department of Earth Sciences, VIC-3800 Monash University, Australia Fax: ++61-3-9905-4903; e-mail: joelb@mail.earth.monash.edu.au, AU;(2) Kalgoorlie Consolidated Gold Mines, PMB 27 Kalgoorlie, 6430 Western Australia, AU
Abstract:Scheelite is a widespread accessory mineral in hydrothermal gold deposits, and its rare earth element (REE) patterns and Nd and Sr isotopic compositions can be used to constrain the path and origin of the mineralising fluids and the age of the hydrothermal activity. Micro-analyses by laser ablation high resolution inductively coupled mass spectroscopy and cathodoluminescence imaging reveal a very inhomogeneous distribution of the REE in single scheelite grains from the Mt. Charlotte and Drysdale Archaean gold deposits in Western Australia. Two end-member REE patterns are distinguished: type I is middle REE (MREE)-enriched, with no or minor positive Eu-anomaly, whereas type II is flat or MREE-depleted with a strong positive Eu-anomaly. The chemical inhomogeneity of these scheelites is related to oscillatory zoning involving type I and type II patterns, with zone widths varying from below 1 to 200 μm. Intra-sectorial growth discontinuities, syn-crystallisation brittle deformation, and variations in the relative growth velocities of crystallographically equivalent faces suggest a complex crystallisation history under dynamic hydraulic conditions. The co-existence of MREE-enriched and MREE-depleted patterns within single scheelite crystals can be explained by the precipitation of a mineral which strongly partitions MREE relative to light and heavy REE. Scheelite itself has such characteristics, as does fluorapatite, which is locally abundant and has REE contents similar to that of scheelite. In this context, the systematic increase of the Eu-anomaly between type I and type II patterns is produced by the difference between the partition coefficients of Eu2+ and Eu3+, and not by fluid mixing or redox reactions. Consequently, the high positive Eu-anomaly typical of scheelite from gold ores may not necessarily be inherited from the hydrothermal fluid, but may reflect processes occurring during ore deposition. This case study demonstrates that in hydrothermal systems characterised by low REE concentrations in the fluid, and by the precipitation of a REE-rich mineral which strongly fractionates the REE, the REE patterns of such a mineral will be highly sensitive to the dynamics of the hydrothermal system. Received: 1 November 1999 / Accepted: 4 February 2000
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号