首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Second-Order Modelling of Turbulence in Katabatic Flows
Authors:Bruce Denby
Institution:(1) Institute for Marine and Atmospheric Research (IMAU), Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
Abstract:A complete one-dimensional second-order closure model is used to simulate katabatic flows observed on glaciers and ice caps. The model is tested with two different closure assumptions for the viscous dissipation, one based on a prognostic equation for epsi and the other on a diagnostic buoyant length scale. Both formulations give quite similar results. Model simulations are compared to observations made over sloping ice surfaces during periods dominated by katabatic flow. In general, good agreement is found for both mean wind and temperature profiles as well as eddy correlation measurements. It is also found that the turbulent transport terms play an important role in katabatic flows as opposed to the classical stable boundary layer where these terms are usually ignored. Even the turbulent transport of temperature variance, which leads to the well-known countergradient term in unstable boundary layers, is relatively important for modelling the observed temperature profiles. The effect of these terms on the flux-profile relationships, using observed and simulated profiles, is also discussed.
Keywords:Katabatic  Glacier Wind  Stable boundary layer  Second-order turbulence modelling
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号