首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Continuous absorption and depression in the solar spectrum at wavelengths from 650 to 820 nm
Authors:M V Vavrukh  I E Vasil’eva  O M Stelmakh  N L Tyshko
Institution:1.Ivan Franko National University of Lviv,Lviv,Ukraine;2.Main Astronomical Observatory,National Academy of Sciences of Ukraine,Kyiv,Ukraine
Abstract:Results of calculations of the cross-sections of the basic processes forming continuous absorption in the photospheres of solar-type stars in the visible and infrared spectral ranges are reported. (These processes are photoionization of H ions and excited hydrogen atoms, as well as absorption of photons by “free” electrons being in the partially ionized plasma of the photosphere.) The effective cross-section of hydrogen satisfying the observational data or the results of laboratory experiments was introduced, and its nonmonotonic behavior caused by photoionization of excited hydrogen atoms was ascertained in the spectral range of λ from 650 to 820 nm. For a plane-parallel model of the Sun, the continuous absorption coefficient κ c (λ|z) was calculated as a function of the wavelength and coordinate. Its spectral features caused by the effective cross-section structure in the above-mentioned spectral range were for the first time analyzed. The spectral dependence of the radiation intensity in the solar disk center in the continuous spectral range of λ from 600 to 900 nm was studied. The calculation results were compared to the currently available data of observations. It has been shown that the deviation of the observed radiation intensity from the Planck distribution (i.e., the depression) is caused by the processes of photoionization of the excited hydrogen atoms in the states with a principal quantum number n = 3. In the range of λ from 650 to 820 nm, the mean relative deviation is approximately 4%. It has been established that the magnitude of the depression effect significantly depends on the effective temperature of the photosphere of a solar-type star.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号