首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Late Neoarchean volcanic rocks in the southern Liaoning Terrane and their tectonic implications for the formation of the eastern North China Craton
Institution:1. Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, School of Earth and Space Sciences, Peking University, Beijing, 100871, China;2. Department of Natural Resources of Hebei Province (Ocean Administration), Shijiazhuang, 050051, China;3. Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Department of Geology, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
Abstract:The late Neoarchean metamorphosed volcanic rocks in the southern Liaoning Terrane (SLT) of the eastern North China Craton (NCC) are mainly composed of amphibolites and felsic gneisses and can be chemically classified as basalt (Group#1), basaltic andesite (Group#2), dacite (Group#3) and rhyodacite (Group#4). LA-ICP-MS zircon U–Th–Pb dating reveals that they formed at ~2.53–2.51 ​Ga. Group#1 samples are characterized by approximately flat chondrite-normalized rare earth element (REE) patterns with low (La/Yb)N ratios and a narrow range of (Hf/Sm)N ratios, and their magmatic precursors were generated by partial melting of a depleted mantle wedge weakly metasomatized by subducted slab fluids. Compared to Group#1 samples, Group#2 samples display strongly fractionated REE patterns with higher (La/Yb)N ratios and more scattered (Hf/Sm)N ratios, indicative of a depleted mantle wedge that had been intensely metasomatized by slab-derived melts and fluids. Group#3 samples are characterized by high MgO and transition trace element concentrations and fractionated REE patterns, which resemble typical high-Si adakites, and the magmatic precursors were derived from partial melting of a subducted oceanic slab. Group#4 samples have the highest SiO2 and the lowest MgO and transition trace element contents, and were derived from partial melting of basaltic rocks at lower crust levels. Integrating these tholeiitic to calc-alkaline volcanic rocks with the mass of contemporaneous dioritic-tonalitic-trondhjemitic-granodioritic gneisses, the late Neoarchean volcanic rocks in the SLT were most likely produced in an active continental margin. Furthermore, the affinities in lithological assemblages, metamorphism and tectonic regime among SLT, eastern Hebei to western Liaoning Terrane (EH–WLT), northern Liaoning to southern Jilin Terrane (NL–SJT), Anshan-Benxi continental nucleus (ABN) and Yishui complex (YSC) collectively indicate that an integral and much larger continental block had been formed in the late Neoarchean and the craton-scale lateral accretion was a dominantly geodynamic mechanism in the eastern NCC.
Keywords:Late Neoarchean  Volcanic rocks  Subduction  Southern Liaoning Terrane  Eastern North China Craton
本文献已被 ScienceDirect 等数据库收录!
点击此处可从《地学前缘(英文版)》浏览原始摘要信息
点击此处可从《地学前缘(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号