首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Reconstruction of the trajectory of the Huygens probe using the Huygens Atmospheric Structure Instrument (HASI)
Authors:G Colombatti  P Withers  F Ferri  AJ Ball  V Gaborit  B Hathi  T Makinen  MC Towner  F Angrilli
Institution:a CISAS G. Colombo, University of Padova, Via Venezia 15, 35131 Padova, Italy
b Center for Space Physics, Boston University, 725 Commonwealth Avenue, Boston, MA 02215, USA
c Planetary and Space Sciences Research Institute, Centre for Earth, Planetary, Space and Astronomical Research, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
d LESIA, Observatoire de Paris, 5 Place Janssen, 92195 Meudon, France
e Finnish Meteorological Institute (FMI), Vuorikatu 15 A, 00100 Helsinki, Finland
f MottMcDonald Ltd., London, UK
Abstract:The Huygens probe returned scientific measurements from the atmosphere and surface of Titan on 14 January 2005. Knowledge of the trajectory of Huygens is necessary for scientific analysis of those measurements. We use measurements from the Huygens Atmospheric Structure Instrument (HASI) to reconstruct the trajectory of Huygens during its mission. The HASI Accelerometer subsystem measured the axial acceleration of the probe with errors of 3E−6 m s−2, the most accurate measurements ever made by an atmospheric structure instrument on another planetary body. The atmosphere was detected at an altitude of 1498 km. Measurements of the normal acceleration of the probe, which are important for determining the probe's attitude during hypersonic entry, were significantly less accurate and limited by transverse sensitivity of the piezo sensors. Peak acceleration of 121.2 m s−2 occurred at 234.9 km altitude. The parachute deployment sequence started at 157.1 km and a speed of 342.1 m s−1. Direct measurements of pressure and temperature began shortly afterwards. The measured accelerations and equations of motion have been used to reconstruct the trajectory prior to parachute deployment. Measured pressures and temperatures, together with the equation of hydrostatic equilibrium and the equation of state, have been used to reconstruct the trajectory after parachute deployment. Uncertainties in the entry state of Huygens at the top of the atmosphere are significant, but can be reduced by requiring that the trajectory and atmospheric properties be continuous at parachute deployment.
Keywords:Titan  Atmosphere  Huygens  Data reduction techniques  Atmospheric entry
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号