首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Wave attenuation by flexible,idealized salt marsh vegetation
Institution:1. Dept. of Hydraulic Eng., Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands;2. Flanders Hydraulics Research, Berchemlei 115, 2140 Antwerp, Belgium
Abstract:Wave attenuation by vegetation is a highly dynamic process and its quantification is important for understanding shore protection potential and modeling coastal hydrodynamics. Data documenting the interactions of Spartina alterniflora, represented by polyolefin tubing, and single- and double-peaked irregular waves were collected in a large-scale laboratory flume. The laboratory provided a controlled environment to evaluate wave attenuation, including the parameters of stem density, submergence, wave height, and peak period. Wave attenuation appeared to be most dependent on stem density and the ratio of stem length to water depth. Wave attention increased slightly with wave height while no clear trend with respect to wave period was seen. Treating double-peaked spectra as superimposed wave systems revealed a preferential dissipation of the higher-frequency wave system relative to the lower-frequency wave system under emergent conditions. Wave energy loss occurred at all frequencies of both spectral types, with dissipation increasing with frequency above the spectral peak. Parameterizing the spectral equilibrium range as a function of frequency showed a steepening of the spectral tail compared to the ? 4 power law under emergent conditions. An empirical relationship defining the bulk drag coefficient for S. alterniflora as a function of the stem Reynolds number is found to serve as a first estimate for engineering applications.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号