首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Models of the millimeter-centimeter spectra of the giant planets
Authors:Imke De Pater  Steven T Massie
Institution:Astronomy Department, University of California, Berkeley, California 94720, USA
Abstract:Hitherto Jupiter's spectrum at short millimeter wavelenghts showed a clear discrepancy with model calculations (e.g., G.L. Berge and S. Gulkis, 1976, In Jupiter (T. Gehrels, Ed.), pp. 621–692. Univ. of Arizona Press, Tucson). A similar although less pronounced, discrepancy appears to exist for Uranus and Neptune. One explanation of this discrepancy is that additional absorbers not included in the model calculations are present in the atmosphere. It was suggested that uncertainties in the absorption coefficient of ammonia, especially at millimeter wavelengths, may be responsible for at least part of the discrepancy. A comparison of various model atmosphere calculations with data for all four giant planets is shown. The absorption profile of ammonia at centimeter wavelengths was assumed to be rightly represented by a Ben Reuven line profile, which enabled the derivation of information on the vertical distribution of ammonia in these planets' atmospheres. It appeared that ammonia must be depleted in the upper atmospheres of all four planets by a factor of 4–5 with respect to the solar abundance for Jupiter (and Saturn) and by a factor of 100–200 for Uranus and Neptune. At deeper layers the optical depth is larger, due either to a larger abundance of ammonia or to absorption by the presence of water. Given the vertical ammonia distribution in the atmospheres as derived from the centimeter data, a best fit to the millimeter spectra of all four planets was found by changing the high frequency tail of the ammonium lineshape profile. This, we feel, is legitimate since the profile at millimeter wavelenghts is not or is only poorly known due to the absence of laboratory spectra for ammonia as a trace constituent in an otherwise hydrogen gas. It was found that a line profile which at millimeter wavelenghts more closely resembles a Van Vleck-Weisskopf lineshape than the usually adopted Ben Reuven profile gives a rather satisfactory fit to the data of all four gaseous planets.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号