首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The partial volatilization of Mercury
Authors:AGW Cameron
Institution:Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA
Abstract:During recent years my research on the primitive solar nebular has followed two main themes: (1) Very early in the development of the nebula conditions probably favored the occurence of major gaseous instabilities leading to the formation of giant gaseous protoplanets, but the rapid rise of the external temperature soon evaporated the envelopes of these protoplanets, possibly leaving behind precipitated solids which formed the cores and mantles of the terrestrial planets. (2) Models of the nebula indicate a later stage when conditions in the inner Solar System became very hot; at the position of Mercury the temperature was probably in the range 2500–3500°K. This leads to the hypothesis that the original protomercury was a body substantially more massive than the present planet and of normal composition, but that when it was immersed in the high-temperature field of the dissipating solar nebula, most of the rocky mantle was vaporized and mixed into the solar nebula gases and carried away by them. This hypothesis is investigated in the present paper. For simplicity the vaporization of a mantle composed of enstatite, MgSiO3, was computed for a planet with 2.25 the mass of Mercury at a temperature of 3000°K. It is argued that the mantle could probably be largely removed in the available time of 3 × 104 years. Subsequent accretion would restore some magnesium silicates to the mantle of the planet.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号