首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Vertical cloud structure of Jupiter's Equitorial Plumes
Authors:Carol R Stoker  Charles W Hord
Institution:Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80309, USA
Abstract:A model for the vertical cloud structure of Jupiter's Equitorial Plumes is deduced based on an analysis of Voyager images of the equitorial region in the 6190Å methane band and the 6000-Å continuum, and ground-based 8900-Å methane band images of Jupiter. A computer code that represents scattering and absorption from aerosol and gas layers was applied to a heirarchy of increasingly complex model aerosol structures to match the observations in the three wavelengths. The observations are consistent with a model for the vertical cloud structure of the equitorial region that consists of four aerosol layers. A high-altitude haze layer (HAL) with optical depth τ = 1 uniformly blankets the equitorial region at an altitude between 100 and 250 mbar. Below that, a middle-level cloud layer between 400 and 800 mbar contains the well-known Equatorial Plumes. The Plume clouds are optically thick (τ ≥ 12), bright clouds with single scattering albedo ω = 0.997. They are probably composed of ammonia ice. The darker (ω = 0.990) interplume regions contain optically thinner clouds (2 ≤ τ ≤ 5) at the same altitude as the Plumes. An opaque cloud deck between 4000 and 6000 mbar, which is probably composed of water, forms the lowest model layer. In addition to these three layers, a thin forward scattering haze layer above 100 mbar was included in the models for consistency with previous work (Tomasko et al., 1978). We conclude that the vertical structure of the Equatorial Plume clouds is consistent with the hypothesis (Hunt et al., 1981) that the Plumes are caused by upwelling at the ammonia condensation level produced by bouyancy due to latent heat release from the condensation of water clouds nearly three scale heights below the Plumes.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号