首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Distributions of copepod nauplii and turbulence on the southern flank of Georges Bank: implications for feeding by larval cod (Gadus morhua)
Authors:Lewis S Incze  Peter Aas  Terri Ainaire
Abstract:The vertical distributions of copecod nauplii and water properties were sampled at well-mixed and stratified sites on Georges Bank using a pumping system, CTD and in vivo fluorometer during a four day period in late May 1992. At each stratified station at least one sample was taken within the thermocline and the fluorescence maximum, which usually co-occurred. Well-mixed sites had low average concentrations of nauplii, ca 41−1, and showed little variation of abundance with depth. Stratified sites had from 4 to 16 times the integrated (0–50 m) abundance of nauplii compared to well-mixed sites and showed strong vertical patterns of distribution. Maximum concentrations of nauplii, up to 1601−1, were associated with the thermocline at 7 of the 9 stratified stations. At the two remaining stratified sites the naupliar maximum was in the upper mixed layer, sampled at 5 m depth. The encounter rate between early feeding cod (Gadus morhua) larvae and their naupliar prey was calculated with and without turbulence. Turbulence was estimated from two sources: wind stress in the upper layer (calculated from wind observations during our cruise) and tidal shear in the lower layer (estimated initially from a tidal mixing equation). We ultimately replaced the lower layer estimates with turbulence data from a series of measurements made in 1995. The latter are more robust and had the advantage of providing dissipation rates for the pycnocline as well as the lower layer. Theory predicts an increase in encounters between a predator and its prey with the addition of turbulence parameters into standard models of encounter. We combined turbulence profiles with the vertical distribution of nauplii to examine the potential contribution of turbulent kinetic energy to predator-prey encounter rates at various depths in stratified and mixed water columns. Our calculations suggest the following increases due to turbulence at stratified sites on Georges Bank during our cruise: from 34 to 219% in the upper mixed layer, depending on wind speed and depth; approximately 8% in the pycnocline; and approximately 110% below the pycnocline. Mixed sites experience increases of at least 110% (tide only), but greater increases (118–192% in this study) occur when the wind blows because of the combined (spatially overlapped) effects of wind and tidal mixing at these sites. The absolute values for encounter rates and their modification by turbulence are sensitive to a number of assumptions in the models. We used a series of stated assumptions to generate estimates that range from 0.6 to 26.5 prey h−1, depending on geographical location, physical forcing and depth.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号