首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Well log data analysis for lithology and fluid identification in Krishna-Godavari Basin,India
Authors:Baisakhi Das  Rima Chatterjee
Institution:1.Department of Applied Geophysics,Indian Institute of Technology (Indian School of Mines), Dhanbad,Dhanbad,India
Abstract:Well log analysis provides the information on petrophysical properties of reservoir rock and its fluid content. The present study depicts interpretation of well log responses such as gamma ray, resistivity, density and neutron logs from six wells, namely W-1, W-2, W-9, W-12, W-13 and W-14 under the study area of Krishna-Godavari (K-G) basin. The logs have been used primarily for identification of lithology and hydrocarbon-bearing zones. The gamma ray log trend indicates deposition of cleaning upward sediment. Coarsening upward, clayey-silty-sandy bodies have been evidenced from the gamma ray log. Gas-bearing zones are characterised by low gamma ray, high deep resistivity and crossover between neutron and density logs. Total 14 numbers of hydrocarbon-bearing zones are identified from wells W-9, W-12, W-13 and W-14 using conventional log analysis. Crossplotting techniques are adopted for identification of lithology and fluid type using log responses. Crossplots, namely P-impedance vs. S-impedance, P-impedance vs. ratio of P-wave and S-wave velocities (Vp/Vs) and lambda-mu-rho (LMR), have been analysed to discriminate between lithology and fluid types. Vp/Vs vs. P-impedance crossplot is able to detect gas sand, brine sand and shale whereas P-impedance vs. S-impedance crossplot detects shale and sand trends only. LMR technique, i.e. λρ vs. μρ crossplot is able to discriminate gas sand, brine sand, carbonate and shale. The LMR crossplot improves the detectability and sensitivity of fluid types and carbonate lithology over other crossplotting techniques. Petrophysical parameters like volume of shale, effective porosity and water saturation in the hydrocarbon-bearing zones in these wells range from 5 to 37%, from 11 to 36 and from 10 to 50% respectively. The estimated petrophysical parameters and lithology are validated with limited core samples and cutting samples from five wells under the study area.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号