首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Unsteady mass outflow from Wolf-Rayet stars
Authors:Kh F Khaliullin  A I Khaliullina
Institution:(1) Sternberg Astronomical Institute, Universitetskii pr. 13, Moscow, 119899, Russia
Abstract:We show that hydrostatically equilibrium models for the thin photospheres of helium stars based on new opacities κR (OPAL and OP) can be constructed only for masses M<5M . The parameter Г=κL/4πGMc, defined as the ratio of light pressure to gravity, exceeds a critical value of 1.0 for larger masses, which must result in mass outflow under light pressure. This mass limit matches the observed lower limit for the masses of Wolf-Rayet stars (M WR>5M )), which is an additional argument that the Wolf-Rayet stellar cores are actually helium stars. By solving the equation of radiative transfer in extended atmospheres, we construct a semiempirical model for a WN5 star (M WN5=10M )) with a helium core and an expanding envelope, whose physical and geometric parameters are known mainly from light-curve solution for the eclipsing binary V444 Cyg (WN5+06): outflow rate $\dot M \approx 1.0 \times 10^{ - 5} M_ \odot yr^{ - 1} $ , terminal velocity V ≈2000 km s?1, and expanding-envelope optical depth τenv≈25. The temperature at the outer boundary of the photosphere of a helium star surrounded by such an envelope is approximately 130 kK higher than that in the absence of an envelope, being T ph≈240 kK. Because of the high temperatures, the absorption coefficients at the corresponding photospheric levels are smaller than those in models with no envelope; therefore, the photosphere turns out to be in hydrostatic equilibrium and stable against light pressure (Гmax≈0.9). As a way out of this conflicting situation (an expanding envelope together with a hydrostatically equilibrium photosphere), we propose a model of discrete mass outflow, which is also supported by the observed cloudy structure of the envelopes in this type of stars. To quantitatively estimate parameters of the nonuniform outflow model requires detailed gas-dynamical calculations.
Keywords:sta—  variable and peculiar
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号