首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Moisture retrievals from simulated zenith delay "observations" and their impact on short‐range precipitation forecasts
Authors:MANUEL S F V DE PONDECA  XIAOLEI ZOU
Institution:National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, Colorado 80303, USA;;Department of Meteorology, Florida State University 404 Love Building, Tallahassee, Florida 32306, USA
Abstract:The feasibility of assimilating the GPS total zenith delay into atmospheric models is investigated within the framework of the "Observing System Simulation Experiment." The total zenith delay is made up of two terms: one is proportional to the pressure at the site of the GPS ground‐based receiver and the other to the overlying amount of water vapor. Using the MM5 mesoscale model and its adjoint, a set of 4‐dimensional variational (4DVAR) experiments is performed. Results from the assimilation of simulated precipitable water observations are used as the benchmark. The model domain covers Southern California. The observations are simulated with a 10 km horizontal resolution model that includes full physics, while a 20‐km resolution and a less comprehensive physics package are used in the 4DVAR experiments. Both, the 10‐km and 20‐km models employ the same set of 15 vertical levels. Moisture fields retrieved from the total zenith delay are found to compare very well with those retrieved from the precipitable water. Verified against the observations, the vertically integrated moisture is found to be very accurate. An overall improvement is also achieved in the vertical profiles of the moisture fields. The use of the so‐called background term and model initialization are shown to greatly reduce the negative impact that the sole assimilation of the total zenith delay can have on the pressure field and integrated water vapor. The adverse effect stems from the poor resolution of the topography needed to evaluate the model pressure at the GPS sites. The analysis increments of all model fields are found to be similar to the counterparts obtained from the assimilation of the precipitable water. The same is true for the short‐range precipitation forecasts initiated from the 4DVAR‐optimal initial conditions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号