首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Carbonate alteration of the Upper Mount McRae Shale beneath the martite-microplaty hematite ore deposit at Mount Whaleback, Western Australia
Authors:Adam D Webb  Gerald R Dickens  Nicholas H S Oliver
Institution:(1) School of Earth Sciences, James Cook University, 4811 Townsville, QLD, Australia;(2) Present address: Department of Earth Sciences, Rice University, Houston, TX 77005, USA
Abstract:The formation of large martite-microplaty hematite ore deposits in northwest Australia remains a contentious topic in part because important evidence supporting a unifying genetic model has not been observed at all deposits. Carbonate replacement of silica has been found along normal faults below ore at the Mount Tom Price and Giles Mini deposits, which suggests an early hypogene process during ore formation. However, such rocks have not been identified at the largest martite-microplaty hematite deposit, Mount Whaleback. In this study, samples of the Mount McRae Shale are examined for their chemistry, mineralogy and petrography. These samples were collected from several key locations, including an area that immediately underlies ore along the Mount Whaleback fault at Mount Whaleback. Compared to unaltered black Mount McRae Shale from Wittenoom Gorge in the north and altered black and red Mount McRae Shale at Mount Whaleback, reddish-green Mount McRae Shale along the Mount Whaleback fault is greatly enriched in MgO and CaO and depleted in SiO2. This chemistry arises from significant amounts of fine- to medium-grained ferroan-dolomite and ankerite and cross-cutting chlorite and carbonate veins. The composition is distinct from that produced during regional metamorphism, and most likely represents hydrothermal alteration after metamorphism. The lack of carbonate-rich, silica-poor rocks in the overlying Dales Gorge Member at Mount Whaleback is consistent with pervasive oxidation of most rocks in the region during or after ore genesis, a process that removed carbonates. Although several questions remain unanswered, these results support models that invoke an early hypogene stage during the formation of the martite-microplaty hematite deposits in the Hamersley Province.Editorial Handling: B. Lehmann
Keywords:Martite-microplaty hematite ore deposits  Northwest Australia  Carbonate replacement of silica  Chemistry  mineralogy and petrography  Hypogene stage
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号