首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ground motion modelling in Tehran based on the stochastic method
Authors:Saman Yaghmaei-Sabegh  Nelson TK Lam
Institution:1. Department of Civil Engineering, University of Tabriz, Tabriz, Iran;2. Department of Civil and Environmental Engineering, The University of Melbourne, Parkville, Vic. 3010, Australia
Abstract:This paper presents the development of a seismological model for the Tehran area. This modelling approach, which was originally developed in Eastern North America, has been used successfully in other parts of the world including Australia and China for simulating accelerograms and elastic response spectra. Parameters required for input into the model were inferred from seismological and geological information obtained locally. The attenuation properties of the earth crust were derived from the analysis of accelerogram records that had been collated from within the region in a previous study. In modelling local modifications of seismic waves in the upper crust, shear-wave velocity profiles have been constructed in accordance with the power law. Information inferred from micro-zonation studies (for near-surface conditions) and from measurements of teleseismic P-waves reflected from the deeper crusts as reported in the literature has been used to constrain parameters in the power-law relationships. This method of obtaining amplification factors for the upper crust distinguishes this study from earlier studies in the Tehran area (in which site amplification factors were inferred from the H/V ratio of the recorded ground motions). The regional specific seismological model so constructed from the study enabled accelerograms to be simulated and elastic response spectra calculated for a series of magnitude–distance combinations. Importantly, elastic response spectra calculated from the simulated accelerograms have been compared with those calculated from accelerograms recorded from earthquakes with magnitudes ranging between M6.3 and M7.4. The peak ground velocity values calculated from the simulated accelerograms have also been correlated with values inferred from macro-seismic intensity data of 17 historical earthquakes with magnitudes varying between 5.4 and 7.7 and with distances varying between 40 and 230 km. This paper forms part of the long-term strategy of the authors of applying modern techniques for modelling the attenuation behaviour of earthquakes in countries which are lacking in instrumental data of earthquakes.
Keywords:Stochastic model  Shear wave velocity  Attenuation  Tehran  Crustal effect  Ground motion simulation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号