首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Biogeochemical processes affecting total arsenic and arsenic species distributions in an intermittently anoxic fjord
Authors:M L Peterson  R Carpenter
Abstract:Total arsenic, arsenate and arsenite concentration profiles for the water column of Saanich Inlet, an intermittently anoxic fjord located on Vancouver Island, B.C., Canada, were measured using independent analytical techniques for total arsenic and arsenic speciation to evaluate the accuracy of the speciation technique in both oxic and anoxic marine environments. Total arsenic profiles indicate a mid-depth minimum of about 1.0 ppb above the oxic—anoxic interface and an enrichment in the anoxic zone to about 2.0 ppb. This minimum may be due to either advection of arsenic-poor water into Saanich Inlet at mid-depth or arsenic incorporation onto solid phases within a bacteria- and manganese-rich particulate layer located immediately above the oxic—anoxic interface and subsequent removal via sinking particulate material. Ratios of total arsenic to phosphorus in the deep, anoxic waters of the basin are similar to those reported for marine algae, suggesting that the enrichment of total arsenic within the anoxic bottom layer may be due to its release upon organic matter decomposition.Arsenate and arsenite concentration versus depth profiles indicate a rapid (but incomplete in a thermodynamic sense) response to the oxic—anoxic interface. The arsenate/ arsenite concentration ratio is 15/1 in the oxic region of the water column and 1/12 in the anoxic zone. Arsenate—arsenite interconversion occurs at a depth shallower than ferric-ferrous but deeper than MnO2 —Mn2+ interconversions.Measurements of arsenite oxidation rates at near-ambient arsenite concentrations and temperatures using an 74As3+ radioactive tracer technique indicate that arsenite oxidation is initially ten times faster in seawater taken from the manganese-rich particulate layer at 165 m depth than in seawater collected near the surface at 50 m depth. Addition of antibiotics to seawater from 165 m depth initially suppressed the rate of arsenite oxidation, indicating that it may be partially microbially mediated.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号