首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Scaling properties within the Gulf of Corinth, Greece; comparison between offshore and onshore active faults
Authors:V Zygouri  S Verroios  S Kokkalas  P Xypolias  IK Koukouvelas  
Institution:aUniversity of Patras, Department of Geology, Division of Physical Geology, Marine Geology and Geodynamics, 265 00 Patras, Greece
Abstract:The Gulf of Corinth, Greece, is a 110-km-long by 30-km-wide active graben displaying strong seismicity hosted both on north and south dipping normal faults. This complex fault pattern consists of two fault populations, offshore and onshore. The offshore fault population is investigated by densely arranged seismic reflection profiles during the last 20 years, whereas the onshore fault population displays spectacular and well exposed faults, delineated by high accuracy mapping. We analyzed fault length and throw, in order to study the scaling properties of 136 well-determined offshore and onshore faults and the comparison between the two datasets. We examined the statistical properties on both fault populations, in order to describe the role of segmentation in the growth of faults and the different stages of the evolution of the fault networks.Our results on power law relationships associated with the scaling properties of the fault zones in the Gulf of Corinth, suggest that both fault populations are bi-fractal, providing the initiation of a sature state in deformation. In addition, the vertical throw of faults shows that both fault populations have similar properties but different distributions below and above 5 km, respectively. Displacement–length ratios, show that faults larger than 9 km appear to accumulate throw without any dramatic change to their length. These observations combined with other geophysical studies within the Gulf, suggest that the characteristic fault lengths of 5 km and 9 km can be correlated to the crustal mechanical structure and the seismicity of the Gulf.
Keywords:Fault length  Segmentation  Fault evolution  Bi-fractal  Throw
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号