首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Photoelectric lightcurves of the asteroid 1862 Apollo
Institution:1. INAF - Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, Firenze 50125, Italy;2. Aryabhatta Research Institute of Observational Sciences, Manora Peak, Naini Tal, 263002 India;3. Universiti Sains Malaysia, Pulau Pinang, Malaysia
Abstract:Photoelectric lightcurves of the asteroid 1862 Apollo were obtained in November–December 1980 and in April–May 1982. The period of rotation is unambiguously determined to be 3.0655 ± 0.0008 hr. The 1980 observations span a range of solar phase angle from 30° to 90°, and the 1982 observations, 0.°2 to 90°. The Lumme-Bowell-Harris phase relation can be fit to the absolute magnitudes at maximum light with an RMS scatter of 0.06 magnitude over the entire range of phase angle. The constants of the solution are absolute V magnitude at zero phase angle and at maximum light, 16.23 ± 0.02; slope parameter, 0.23 ± 0.01. These constant corresponds to values in the linear phase coefficient system of V(1, 0) = 16.50 ± 0.02 and a phase coefficient of βv = 0.0305 ± 0.0012 mag/degree in the phase range 10°–20°. The slope of the phase curve is typical for a moderate albedo asteroid. The absolute magnitudes observed in 1980 and 1982 fall along a common phase curve. That is, Apollo was not intrinsically brighter at one apparition than the other. This is not surprising, since the two apparitions were almost exactly opposite one another in the sky. A pole position was calculated from the observed deviation of the lightcurve from constant periodicity (synodic-sidereal difference) during both apparitions. The computed 1950 ecliptic coordinates of the pole are: longitude = 56°, latitude = −26°. This is the “north” pole with respect to right-handed (counter-clockwise) rotation. The formal uncertainty of the solution for the pole position is less than 10°, but realistically may be several times that, or even completely wrong. The sidereal period of rotation asscociated with this pole solution is 3.065436 ± 0.000012 hr.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号