首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Analysis of the Effect of Optical Properties of Black Carbon on Ozone in an Urban Environment at the Yangtze River Delta,China
Authors:Junlin AN  Huan LV  Min XUE  Zefeng ZHANG  Bo HU  Junxiu WANG  Bin ZHU
Abstract:Black carbon (BC) reduces the photolysis coefficient by absorbing solar radiation, thereby affecting the concentration of ozone (O3) near the ground. The influence of BC on O3 has thus received much attention. In this study, Mie scattering and the tropospheric Ultraviolet and Visible radiation model are used to analyze the effect of BC optical properties on radiation. Combined with data of O3 precursors in Nanjing in 2014, an EKMA curve is drawn, and the variations in O3 concentration are further investigated using a zero-dimensional box mechanism model (NCAR MM). When O3 precursors are unchanged, radiation and O3 show a highly similar tendency in response to changing BC optical properties (R=0.997). With the increase of modal radius, the attenuation of fresh BC to radiation and O3 first trends upward before decreasing. In the mixing process, the attenuation of BC to radiation and O3 presents an upward tendency with the increase of relative humidity but decreases rapidly before increasing slowly with increasing thickness of coating. In addition, mass concentration is another major factor. When the BC to PM2.5 ratio increases to 5% in Nanjing, the radiation decreases by approximately 0.13%–3.71% while O3 decreases by approximately 8.13%–13.11%. The radiative effect of BC not only reduces O3 concentration but also changes the EKMA curve. Compared with the NOx control area, radiation has a significant influence on the VOCs control area. When aerosol optical depth (AOD) increases by 17.15%, the NOx to VOCs ratio decreases by 8.27%, and part of the original NOx control area is transferred to the VOCs control area.
Keywords:black carbon  ozone  radiation  optical properties  EKMA curve
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《大气科学进展》浏览原始摘要信息
点击此处可从《大气科学进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号