首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A laboratory model of a replenished magma chamber
Authors:Herbert E Huppert  J Stewart Turner
Institution:Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EWEngland;Research School of Earth Sciences, Australian National University, Canberra, A.C.T. 2600Australia
Abstract:It has recently been suggested that periodic influxes of hot but heavy magma into the base of a basaltic magma chamber can remain isolated from the rest of the chamber while the new magma cools and crystallization proceeds. When thermal equilibrium is almost complete, the suspended crystals settle out and the residual, less dense liquid can then mix with the fluid above. In the present paper the basic fluid-dynamical processes underlying this model have been investigated in laboratory experiments using aqueous solutions. The lower layer was hot KNO3 solution, for which saturated solutions become less dense as the temperature decreases. With a cold, deeper layer of less dense NaNO3 or K2CO3 above the lower layer, there was strong convective transfer of heat through a sharp interface separating the layers, at a rate which is predicted here drawing on previous studies carried out with oceanographic applications in mind. Once crystallization began, non-equilibrium effects became important and the observed temperatures differ somewhat from those predicted. In the experiments crystals grew mainly from the bottom rather than while in suspension, but this is not an essential aspect of the model. The important fact is that the density of the residual liquid in the lower layer decreased until it became equal to that of the upper layer, and then the interface broke down so that the two layers mixed thoroughly together, leaving a layer of KNO3 crystals at the base. No crystallization at all occurred when the hot input liquid was forced to mix initially with the cold solution already in the chamber.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号