首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rare earth element systematics of hydrous liquids from partial melting of basaltic eclogite a re-evaluation
Authors:Michael J Apted
Institution:Department of Earth and Space Sciences, University of California at Los Angeles, Los Angeles, CA 90024 U.S.A.
Abstract:The origin of orogenic andesitic magmas is tested by calculations of REE fractionation in hydrous melts derived from partial melting of subducted ocean basalt in eclogite facies. New data on the subsolidus phase proportions of basaltic eclogite, the enrichment of LREE in altered ocean basalts, and experimentally determined REE partition coefficients (KD's) between garnet and melt have been included in trace element fractionation equations. Non-modal melting of phases combined with variation inKD's during melting is a unique feature of these calculations.Variation ofKD, melting proportions, initial proportion of subsolidus phases, degree of melting, and initial REE concentrations yield a wide range of input parameters that produce REE profiles in partial melts of basaltic eclogite matching REE profiles of some orogenic andesites. The positive correlation of REE concentration with silica content for many andesitic suites can be accounted for by non-modal melting if quartz (or a similar phase with low REEKD values) melts at a high melting proportion and garnet melts at a low melting proportion during the first stages of fusion. However, no mineralogic fractionation scheme can account for REE/silica systematics if REEKD values are linearly decreasing with increasing melting. Earlier workers who have used similar calculations to discredit the eclogite fractionation model have set overly strict, and sometimes incorrect, constraints concerning the range in REEKD values for garnet, the subsolidus proportions of phases in basaltic eclogite, and the relative concentrations of REE in subducted ocean crust undergoing partial melting.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号