首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thermal properties and coal rank in rocks and coal seams of the southern Sydney Basin,new South Wales: A palaeogeothermal explanation of coalification
Authors:RA Facer  AC Cook  AE Beck
Institution:1. Department of Geology, University of Wollongong, Wollongong, N.S.W. 2500, Australia;2. Department of Geophysics, University of Western Ontario, London, Ont. N6A 5B7 Canada
Abstract:Measurements of thermal conductivity on 106 disc specimens of rocks from 275 m of the Permian to Triassic section of the Southern Coalfield of the southern Sydney Basin have been carried out in an effort to explain a high rank gradient in the Permian coals. The samples came from six diamond drill holes north and west of Wollongong, although one hole only provided specimens of a syenitic sill (n = 17, mean thermal conductivity = 2.36 W/m°K, s.d. 0.03). When combined with previously published data on chip specimens, with which there is good agreement, from a further four drill holes the mean thermal conductivity for the late Permian and early Triassic sandstones and shales is 3.20 W/m°K.Heat generation by Permian volcanic rocks below the coal measures (from about 1 to 3 μW/m3), and by basement granitic rocks, appears to be consistent with previously reported heat flow for the southern Sydney Basin (about 80 mW/m2). This heat flow is a relatively high value for the east coast of Australia. Younger (Mesozoic and Tertiary) intrusive and extrusive igneous rocks produce local coal-rank anomalies, but do not appear to have any regional effect.The rank of coals above the Permian volcanic rocks appears to be little affected by the presence of the igneous rocks and the coal-rank decreases towards the major area of vulcanicity. Organic matter in sedimentary rocks interbedded with the volcanic rocks is of relatively high rank but it appears that these thermal effects do not extend more than about 100 m above the base of the coal measures. The area of high rank north and northwest of Wollongong seems likely to be a regional effect associated with a combination of high heat generation in basement and the Permian rocks, and high heat flow from the basement. Greater cover on the coal measures, together with an increase in the proportion of rocks of relatively low thermal conductivity in the cover, may also influence the rank in the Permian coal.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号