首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evaluation and generalization of radiation‐based methods for calculating evaporation
Authors:C‐Y Xu  V P Singh
Abstract:Eight radiation‐based equations for determining evaporation were evaluated and expressed in five generalized forms. Five evaporation equations (Abtew, Hargreaves, Makkink, Priestley and Taylor and Turc), where each represents one generalized form, were then compared with pan evaporation measured at Changins station in Switzerland. The comparison was first made using the original constant values involved in each equation, and then using the recalibrated constant values. Evaluation of the Priestley and Taylor equation requires net radiation data as input, in this study, net radiation was estimated using Equation (16) owing to the lack of observation data. The results showed that when the original constant values were used, large errors resulted for most of the equations. When recalibrated constant values were substituted for the original constant values, four of the five equations improved greatly, and all five equations performed well for determining mean annual evaporation. For seasonal and monthly evaporation, the Hargreaves and Turc equations showed a significant bias, especially for cold months. With properly determined constant values, the Makkink and modified Priestley and Taylor equations resulted in monthly evaporation values that agreed most closely with pan evaporation in the study region. The simple Abtew equation can also be used when other meteorological data except radiation are not available. Copyright © 2000 John Wiley & Sons, Ltd.
Keywords:evaporation  radiation‐based methods  pan evaporation  Switzerland
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号