首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Error-covariances of the estimates of spherical harmonic coefficients computed by LSC,using second-order radial derivative functionals associated with realistic GOCE orbits
Authors:D N Arabelos  C C Tscherning
Institution:(1) Department of Geodesy and Surveying, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;(2) Niels Bohr Institute, University of Copenhagen, Juliane Maries vej 32, 2100 Copenhagen Oe, Denmark
Abstract:Least-squares collocation may be used for the estimation of spherical harmonic coefficients and their error and error correlations from GOCE data. Due to the extremely large number of data, this requires the use of the so-called method of Fast Spherical Collocation (FSC) which requires that data is gridded equidistantly on each parallel and have the same uncorrelated noise on the parallel. A consequence of this is that error-covariances will be zero except between coefficients of the same signed order (i.e., the same order and the same coefficient type CC or SS). If the data distribution and the characteristics of the data noise are symmetric with respect to the equator, then, within a given order and coefficient type, the error-covariances amongst coefficients whose degrees are of different parity also vanish. The deviation from this “ideal” pattern has been studied using data-sets of second order radial derivatives of the anomalous potential. A total number of points below 17,000 were used having an equi-angular or an equal area distribution or being associated with points on a realistic GOCE orbit but close to the nodes of a grid. Also the data were considered having a correlated or an uncorrelated noise and three different signal covariance functions. Grids including data or not including data in the polar areas were used. Using the functionals associated with the data, error estimates of coefficients and error-correlations between coefficients were calculated up to a maximal degree and order equal to 90. As expected, for the data-distributions with no data in the polar areas the error-estimates were found to be larger than when the polar areas contained data. In all cases it was found that only the error-correlations between coefficients of the same order were significantly different from zero (up to 88%). Error-correlations were significantly larger when data had been regarded as having non-zero error-correlations. Also the error-correlations were largest when the covariance function with the largest signal covariance distance was used. The main finding of this study was that the correlated noise has more pronounced impact on gridded data than on data distributed on a realistic GOCE orbit. This is useful information for methods using gridded data, such as FSC.
Keywords:Spherical harmonic coefficients  Least-Squares Collocation  GOCE gradiometer data  Error-covariances
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号