首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Organic Matter Sources Supporting Lower Food Web Production in the Tidal Freshwater Portion of the York River Estuary, Virginia
Authors:Joel C Hoffman  Deborah A Bronk  John E Olney
Institution:1. Virginia Institute of Marine Science, P.O. Box 1346, Gloucester Point, VA, 23062, USA
2. Mid-Continent Ecology Division, National Health and Ecological Effects Research Laboratory, U. S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN, 55804, USA
Abstract:The Mattaponi River is part of the York River estuary in Chesapeake Bay. Our objective was to identify the organic matter (OM) sources fueling the lower food web in the tidal freshwater and oligohaline portions of the Mattaponi using the stable isotopes of carbon (C) and nitrogen (N). Over 3 years (2002–2004), we measured zooplankton densities and C and N stable isotope ratios during the spring zooplankton bloom. The river was characterized by a May–June zooplankton bloom numerically dominated by the calanoid copepod Eurytemora affinis and cladocera Bosmina freyi. Cluster analysis of the stable isotope data identified four distinct signatures within the lower food web: freshwater riverine, brackish water, benthic, and terrestrial. The stable isotope signatures of pelagic zooplankton, including E. affinis and B. freyi, were consistent with reliance on a mix of autochthonous and allochthonous OM, including OM derived from vascular plants and humic-rich sediments, whereas macroinvertebrates consistently utilized allochthonous OM. Based on a dual-isotope mixing model, reliance on autochthonous OM by pelagic zooplankton ranged from 20% to 95% of production, declining exponentially with increasing river discharge. The results imply that discharge plays an important role in regulating the energy sources utilized by pelagic zooplankton in the upper estuary. We hypothesize that this is so because during high discharge, particulate organic C loading to the upper estuary increased and phytoplankton biomass decreased, thereby decreasing phytoplankton availability to the food web.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号