首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The caldera of Volcan Fernandina: a remote sensing study of its structure and recent activity
Authors:Scott K Rowland  Duncan C Munro
Institution:(1) Planetary Geosciences, Geology and Geophysics Department, University of Hawaii at Manoa, 96822 Honolulu, Hawaii
Abstract:Air photographs taken in 1946, 1960, and 1982, together with SPOT HVR-1 images obtained in April and October of 1988, are used to characterize recent activity in and around the caldera of Fernandina Volcano, West Galapagos Islands. The eruptive and collapse events during this time span appear to be distributed in a NW-SE band across the summit and caldera. On the flanks of the volcano, subtle topographic ridges indicate that this is a long-term preferred orientation of extra-caldera activity as well (although radial and arcuate fissures are found on all sectors). The caldera is formed from the coalescence of multiple collapse features that are also distributed along a NW-SE direction, and these give the caldera its elongate and scalloped outline. The NW and SE benches consist of lavas that ponded in once-separated depressions that have been incorporated into the caldera by more recent collapse. The volume of individual eruptions within the caldera over the observed 42 years appears to be small (sim4x106 m3) in comparison to the volumes of individual flows exposed in the caldera walls (sim120–150x106 m3). Field observations (in 1989) of lavas exposed in the caldera walls and their cross-cutting relationships show that there have been at least three generations of calderas, and that at times each was completely filled. An interplay between a varying supply rate to the volcano and a regional stress regime is suggested to be the cause of long-term spatial and volumetric variations in activity. When supply is high, the caldera is filled in relative to collapse and dikes tend to propagate in all directions through the edifice. At other times (such as the present) supply is relatively low; eruptions are small, the caldera is far from being filled in, and dike propagation is influenced by an extra-volcano stress regime.
Keywords:Galagapos  caldera morphology  stress orientations  intra-caldera  structure  temporal variations  tectonic control
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号