首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Linear stability analysis of the explicit treatment of mobilities in non-Newtonian and non-Darcy porous media flow simulation
Authors:Leonardo Patacchini  Romain de Loubens
Institution:1. Total S.A., Pau, France
Abstract:A von Neumann stability analysis of the discretized conservation equation for single-phase porous media flows is performed, where non-Newtonian and non-Darcy effects are accounted for using a velocity (or mass flux)-dependent mobility factor. Comprehensive results in three dimensions for two low-order finite-volume discretizations typically encountered in reservoir simulation are provided, based on edge-centered and upstream cell-centered mobility calculations. It is found that common semi-implicit schemes, where the pressure gradient driving the flow is taken implicitly while the velocity-dependent mobility is evaluated explicitly, are subject to restrictions on the logarithmic derivative of mobility with respect to velocity. A remarkable new result is nevertheless obtained: for any physically acceptable strength of non-Newtonian and non-Darcy effects, there exists a stable and explicit method to evaluate the mobility, rendering the need to implement costly fully implicit schemes more difficult to justify.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号