首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A four‐node plane parametric element based on quadrilateral area coordinate and its application to coupled solid‐deformation/fluid‐flow simulation for porous geomaterials
Authors:Gen Li
Institution:Department of Applied Mechanics and Engineering, School of Engineering, Sun Yat‐sen University, Guangzhou, China
Abstract:A four‐node plane parametric element AQGβ6‐I is constructed on the basis of the quadrilateral area coordinate, the generalized conforming principle and the projection technique with a penalty factor β within an interval of 0–1. When β = 0, the element has excellent bending performance. When β = 1, the element can pass patch test strictly; its performance is as good as many famous elements. When β value is between 0 and 1, such as β = 0.5, the element can arrive at a compromise between (relatively) low sensitivity to mesh distortion and perfect convergence. The work provides an illuminating method to alleviate a difficult problem in finite element modelling using the four‐node quadrilateral element, which can pass the strict patch test, but has poor performance in bending dominated problem; on the contrary, it has excellent performance in bending dominated problem but cannot pass the strong patch test. The AQGβ6‐I with the convergence formulation (β = 1) is then applied to coupled solid‐deformation/fluid‐flow simulation for porous geomaterials. The computational examples are carried out to demonstrate that the AQGβ6‐I (β = 1) element is not only stable, reliable and efficient but also of high accuracy. The present study provides a good applicable element for finite element simulations of solid‐deformation/fluid‐flow for porous geomaterials. Copyright © 2014 John Wiley & Sons, Ltd.
Keywords:quadrilateral area coordinate  generalized conforming  patch test  finite element simulation  fluid flow  CSF  porous geomaterials
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号