首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nd and Sr isotopes in ultrapotassic volcanic rocks from the Leucite Hills,Wyoming
Authors:R Vollmer  P Ogden  J -G Schilling  R H Kingsley  D G Waggoner
Institution:1. Graduate School of Oceanography, University of Rhode Island, 02882, Narragansett, R.I., USA
Abstract:Nd and Sr isotopic compositions and Rb, Sr, Sm and Nd concentrations are reported for madupites, wyomingites and orendites from the Pleistocene volcanic field of the Leucite Hills, Wyoming. All Leucite Hills rocks have negative εNd signatures, indicating derivation or contribution from an old light rare earth element (LREE) enriched source. In this respect they are similar to all occurrences of high potassium magmas so far investigated. But Sr isotopic variations are comparatively small and 87Sr/ 86Sr ratios are unusually low for high-K magmas (0.7053–0.7061, one sample excluded). These values suggest that the light REE enrichment of the source was not accompanied by a strong increase in Rb/Sr. Wyomingites and orendites are isotopically indistinguishable which is consistent with chemical and petrographic evidence for their derivation from a common magma series depending on emplacement conditions. Basic to ultrabasic madupites and more silicic wyomingites/orendites are distinct in their Nd isotopic variations (madupites: εNd= ?10.5 to ?12.3; wyomingites/orendites: εNd= ?13.7 to ?17.0) despite similar Sm/Nd ratios and complete overlap in 87Sr/86Sr. Selective or bulk assimilation of crustal material is unlikely to have significantly affected the Nd and Sr isotopic compositions of the magmas. The measured isotopic ratios are considered to reflect source values. The distinct isotopic characteristics of madupite and wyomingite/orendite magmas preclude their derivation by fractional crystallization, from a common primary magma, by liquid immiscibility or by partial melting of a homogeneous source. Two isotopically distinct, LREE enriched and slightly heterogeneous sources are required. Heterogeneities were most pronounced between magma sources from each volcanic centre (butte or mesa). The relationship between the madupite and wyomingite/orendite sources and their evolution is discussed on the basis of two simple alternative sets of models:
  1. a two-stage evolution model with an old enrichment event (a metasomatic event?) perhaps taking place during the stabilization of the Wyoming Craton 3.2 to 2.5 Gyr ago but not later than 1.2 Gyr ago or
  2. a mixing model involving mixing between one endmember with εNd near zero and another end-member with a strong negative εNd signature.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号