首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cosmogenic and nucleogenic isotopic changes in Mars: their rates and implications to the evolutionary history of Martian surface
Authors:Lal D
Institution:Scripps Institution of Oceanography, Geological Research Division, La Jolla, CA 92093-0220, USA.
Abstract:We present calculations of rates of production of several nuclides in the Martian atmosphere and in the regolith due to nuclear interactions of cosmic ray and radiogenic particles and consider their implications to the evolutionary history of Mars. Nuclides selected are those which, considering their chemical properties, may be useful as tracers for delineating the past histories of the Martian atmosphere and regolith. Calculations are presented for different assumed atmospheric pressures. The regolith production rates for the present thin Martian atmosphere (approximately 20 g cm-2) are expected to be fairly robust because they are based primarily on observed cosmogenic effects in the Moon, for which semiempirical estimates of nuclide production rates have been provided earlier by Reedy (1981). Uncertainties which arise in the calculations of nuclide production rates for an earlier hypothetical Martian atmosphere of approximately 300-500 g cm-2 thickness are discussed. Compared to cosmic ray production rates, the nucleogenic production rates are smaller by several orders of magnitude. However, the nucleogenic production extends to much deeper levels, whereas the cosmogenic production is essentially confined to the top 750-1000 g cm-2 depth. Important examples of nucleogenic production are discussed. Isotopes of neon and argon appear to be very promising for delineating relative magnitudes of a number of planetary processes related to the temporal changes in the thickness of the atmosphere, as well as their release from the regolith. However, quantification of the processes would require higher-precision isotopic data for the atmosphere and also direct measurements of isotopic ratios in the Martian regolith, along with supplementary information on changes in the isotopic compositions of hydrogen, carbon, and nitrogen, which are affected by a variety of mechanisms of escape of gases from the atmosphere. Cosmogenic effects are minimal in these cases. We show that although we can at present draw but limited inferences, the planet Mars presents a unique opportunity to use cosmogenic nuclides as tools to delineate the evolutionary history of the planet as a whole, as well as its regolith and the atmosphere. This arises because of two factors: minimal degassing of the planet, and a fairly intense chemical weathering history of the upper surface. Consequently, an appreciable fraction of some of the isotopes of volatile elements is contributed by nuclear reactions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号