首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Characterization of mixing and spreading in a bounded stratified medium
Authors:Vanessa Zavala-Sanchez  Marco DentzXavier Sanchez-Vila
Institution:Department of Geotechnical Engineering and Geosciences, Technical University of Catalonia (UPC), Campus Nord, Modulo D 2, 8034 Barcelona, Spain
Abstract:Matheron and de Marsily Matheron M, de Marsily G. Is the transport in porous media always diffusive? A counter-example. Water Resour Res 1980;16:901–17] studied transport in a perfectly stratified infinite medium as an idealized aquifer model. They observed superdiffusive solute spreading quantified by anomalous increase of the apparent longitudinal dispersion coefficient with the square root of time. Here, we investigate solute transport in a vertically bounded stratified random medium. Unlike for the infinite medium at asymptotically long times, disorder-induced mixing and spreading is uniquely quantified by a constant Taylor dispersion coefficient. Using a stochastic modeling approach we study the effective mixing and spreading dynamics at pre-asymptotic times in terms of effective average transport coefficients. The latter are defined on the basis of local moments, i.e., moments of the transport Green function. We investigate the impact of the position of the initial plume and the initial plume size on the (highly anomalous) pre-asymptotic effective spreading and mixing dynamics for single realizations and in average. Effectively, the system “remembers” its initial state, the effective transport coefficients show so-called memory effects, which disappear after the solute has sampled the full vertical extent of the medium. We study the impact of the intrinsic non-ergodicity of the confined medium on the validity of the stochastic modeling approach and study in this context the transition from the finite to the infinite medium.
Keywords:Contaminant transport  Stratified medium  Taylor problem  Stochastic modeling  Mixing and spreading  Dispersion  Mixing dynamics  Superdiffusion
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号