首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Radiative Transfer in Inhomogeneous Atmospheres. II
Authors:A G Nikoghossian
Institution:(1) V. A. Ambartsumyan Byurakan Astrophysical Observatory, Armenia
Abstract:This paper is a continuation of a study of radiative transfer in one-dimensional inhomogeneous atmospheres. Two of the most important characteristics of multiple scattering in these media are calculated: the photon escape probability and the average number of scattering events. The latter is determined separately for photons leaving the medium and for photons that have undergone thermalization in the medium. The problem of finding the radiation field in an inhomogeneous atmosphere containing energy sources is also examined. It is assumed that the power of these sources, as well as the scattering coefficient, can vary arbitrarily with depth. It is shown that knowledge of the reflection and transmission coefficients of the atmosphere makes it possible to reduce all these problems to solving some first order linear differential equations with specified initial conditions. A series of new analytic results are obtained. Numerical calculations are done for two types of atmosphere with different depth dependences for the scattering coefficient. These are interpreted physically.
Keywords:radiative transfer  analytical methods  numerical methods
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号