首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Amalthea: Implications of the temperature observed by Voyager
Authors:Damon P Samonelli
Institution:Laboratory for Planetary Studies, Cornell University, Ithaca, New York 14853, USA
Abstract:Voyager 1 IRIS observations of Amalthea, although initially indicating an unusually high temperature, now give a temperature of only 164 ± 5°K, a value consistent with the Earth-based measurement by G. H. Rieke Icarus25, 333–334 (1975)] of 155 ± 15°K. We numerically modeled the temperature profile in the satellite's surface layer as a function of location and time of day, assuming a triaxial ellipsoid shape and thermal properties similar to those of the lunar soil. The major heat source is direct insolation, but temperatures are increased slightly by thermal radiation from Jupiter (?9°K), by sunlight reflected from the planet (?5°K), and by charged particle bombardment (?2°K). Maximum calculated temperatures reach 166°K, and we estimate that the temperature that Voyager would have measured under these circumstances is ≈160°K, in agreement with the observed temperature. Possible sources of error in the model are discussed in detail, including satellite shape effects, unusually low emissivity, uncommonly rough surface, abnormal thermal intertia, variability of the charged particle flux, and Joule heating. The IRIS observation strongly suggests that (i) the Amalthean surface has an emissivity near unity; (ii) the charged particle flux on the satellite at the time of observation was no more than 20 times larger than the flux indicated by Pioneer observations; and (iii) Joule heating of the satellite is insignificant (a conclusion also supported by rough calculations). The IRIS observation cannot, however, put any useful limits on the thermal inertia of the Amalthean surface layer.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号