首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of a permeable sand layer on the mechanism of backward erosion piping using 3D pipe depth measurements
Authors:Akrami  Sepideh  Bezuijen  Adam  van Beek  Vera  Terwindt  Jarno
Institution:1.Department of Civil Engineering, Ghent University, St. Pietersnieuwstraat 33, 9000, Gent, Belgium
;2.Unit Geo-Engineering, Deltares, Delft, The Netherlands
;
Abstract:

Backward erosion piping (BEP) poses a threat to the stability of water-retaining structures. This can lead to severe erosion and collapse of embankments. A novel economically appealing measure against BEP is the coarse sand barrier (CSB). The CSB is a trench filled with coarse sand that is placed below the blanket layer on the landward side of the embankment, which prevents the pipe from developing upstream when it encounters the CSB. Inclusion of a CSB creates a vertically layered sand, which is the situation that can also exist in practice but is different from traditional BEP tests with one homogeneous sand. This paper presents new observations and measurements in medium-scale laboratory tests. 3D measurements of the pipe depth and dimensions are presented and analysed. This analysis indicates how the pipe dimensions evolve during the piping process and shows the erosion mechanism for BEP in vertically layered sands. The findings demonstrate the significance of three-dimensional study of the pipe rather than two dimensions. The pipe depth, width and depth-to-width ratios at the pipe tip in critical erosion stages are measured and presented. In the presented tests, two different erosion behaviours (stepwise pipe progression until failure and straight failure) are found and analysed with respect to possible influential parameters. Higher head drops and flow rates are found in tests with straight failure at the stage before progression. A linear relationship between the hydraulic conductivity contrast (kc) and the critical head drops (hc) is found and observations are used to investigate deviations from the line.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号