首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effective timescales of coupling within fluvial systems
Authors:Adrian M Harvey  
Abstract:This paper presents a review of the coupling concept in fluvial geomorphology, based mainly on previously published work. Coupling mechanisms link the components of the fluvial system, controlling sediment transport down the system and the propagation of the effects of base-level change up the system. They can be viewed at several scales: at the local scale involving within-hillslope coupling, hillslope-to-channel coupling, and within-channels, tributary junction and reach-to-reach coupling. At larger scales, coupling can be considered as zonal coupling, between major zones of the system or as regional coupling, relating to complete drainage basins. These trends are illustrated particularly by the examples of hillslope-to-channel coupling in the Howgill Fells, northwest England, badland systems in southeast Spain, alluvial fans in Spain, USA and UAE, and base-level-induced dissection of Neogene sedimentary basins in southeast Spain. As the spatial scales increase, so do the timescales involved. Effective temporal scales relate to magnitude and frequency characteristics, recovery time and propagation time, the relative importance changing with the spatial scale. For downsystem coupling at the local scale, the first two are important, with propagation time increasing in importance in larger systems, especially in those involving upsystem coupling related to base-level change. The effective timescales range from the individual event, with a return period of decades, through decadal to century timescales for downsystem coupling, to tens to hundreds of thousands of years for the basinwide response to base-level change. The effective timescales influence the relative importance of factors controlling landform development.
Keywords:Coupling  Base level  Gullying  Alluvial fans  Tectonic geomorphology
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号