首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A numerical study of island wakes in the Southern California Bight
Authors:Changming Dong  James C McWilliams
Institution:IGPP, University of California, Los Angeles, CA 90095-1567, USA
Abstract:With the existence of eight substantial islands in the Southern California Bight, the oceanic circulation is significantly affected by island wakes. In this paper a high-resolution numerical model (on a 1 km grid), forced by a high-resolution wind (2 km), is used to study the wakes. Island wakes arise due both to currents moving past islands and to wind wakes that force lee currents in response. A comparison between simulations with and without islands shows the surface enstrophy (i.e., area-integrated square of the vertical component of vorticity at the surface) decreases substantially when the islands in the oceanic model are removed, and the enstrophy decrease mainly takes place in the areas around the islands. Three cases of wake formation and evolution are analyzed for the Channel Islands, San Nicolas Island, and Santa Catalina Island. When flows squeeze through gaps between the Channel Islands, current shears arise, and the bottom drag makes a significant contribution to the vorticity generation. Downstream the vorticity rolls up into submesoscale eddies. When the California Current passes San Nicolas Island from the northwest, a relatively strong flow forms over the shelf break on the northeastern coast and gives rise to a locally large bottom stress that generates anticyclonic vorticity, while on the southwestern side, with an adverse flow pushing the main wake current away from the island, positive vorticity has been generated and a cyclonic eddy detaches into the wake. When the northward Southern California Countercurrent passes the irregular shape of Santa Catalina Island, cyclonic eddies form on the southeastern coast of the island, due primarily to lateral stress rather than bottom stress; they remain coherent as they detach and propagate downstream, and thus they are plausible candidates for the submesoscale “spirals on the sea” seen in many satellite images. Finally, the oceanic response to wind wakes is analyzed in a spin-up experiment with a time-invariant wind that exhibits strips of both positive and negative curl in the island lee. Corresponding vorticity strips in the ocean develop through the mechanism of Ekman pumping.
Keywords:Southern California Bight  Islands  Wakes  Submesoscale eddies  Vorticity  Circulation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号