首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Prediction of early summer rainfall over South China by a physical-empirical model
Authors:So-Young Yim  Bin Wang  Wen Xing
Institution:1. International Pacific Research Center, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
2. Department of Meteorology, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
Abstract:In early summer (May–June, MJ) the strongest rainfall belt of the northern hemisphere occurs over the East Asian (EA) subtropical front. During this period the South China (SC) rainfall reaches its annual peak and represents the maximum rainfall variability over EA. Hence we establish an SC rainfall index, which is the MJ mean precipitation averaged over 72 stations over SC (south of 28°N and east of 110°E) and represents superbly the leading empirical orthogonal function mode of MJ precipitation variability over EA. In order to predict SC rainfall, we established a physical-empirical model. Analysis of 34-year observations (1979–2012) reveals three physically consequential predictors. A plentiful SC rainfall is preceded in the previous winter by (a) a dipole sea surface temperature (SST) tendency in the Indo-Pacific warm pool, (b) a tripolar SST tendency in North Atlantic Ocean, and (c) a warming tendency in northern Asia. These precursors foreshadow enhanced Philippine Sea subtropical High and Okhotsk High in early summer, which are controlling factors for enhanced subtropical frontal rainfall. The physical empirical model built on these predictors achieves a cross-validated forecast correlation skill of 0.75 for 1979–2012. Surprisingly, this skill is substantially higher than four-dynamical models’ ensemble prediction for 1979–2010 period (0.15). The results here suggest that the low prediction skill of current dynamical models is largely due to models’ deficiency and the dynamical prediction has large room to improve.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号