首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Benthic metabolism and the fate of dissolved inorganic nitrogen in intertidal sediments
Authors:WP Porubsky  NB Weston  SB Joye  
Institution:aDepartment of Marine Sciences, The University of Georgia, Athens, GA 30602, USA;bDepartment of Geography and the Environment, Villanova University, Villanova, PA 19085, USA
Abstract:We determined patterns of benthic metabolism and examined the relative importance of denitrification (DNF) and dissimilatory nitrate reduction to ammonium (DNRA) as sinks for nitrate (NO3) in intertidal sediments in the presence and absence of benthic microalgal (BMA) activity. By influencing the activity of BMA, light regulated the metabolic status of the sediments, and, in turn, exerted strong control on sediment nitrogen dynamics and the fate of inorganic nitrogen. A pulsed addition of 15N-labeled NO3 tracked the effect and fate of dissolved inorganic nitrogen (DIN) in the system. Under illuminated conditions, BMA communities influenced benthic fluxes directly, via DIN uptake, and indirectly, by altering the oxygen penetration depth. Under dark hypoxic and anoxic conditions, the fate of water column NO3 was determined largely by three competing dissimilatory reductive processes; DNF, DNRA, and, on one occasion, anaerobic ammonium oxidation (anammox). Mass balance of the added 15N tracer illustrated that DNF accounted for a maximum of 48.2% of the 15NO3 reduced while DNRA (a minimum of 11.4%) and anammox (a minimum of 2.2%) accounted for much less. A slurry experiment was employed to further examine the partitioning between DNF and DNRA. High sulfide concentrations negatively impacted rates of both processes, while high DOC:NO3 ratios favored DNRA over DNF.
Keywords:intertidal sediments  benthic microalgae  denitrification  dissimilatory nitrate reduction to ammonium  anammox
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号