首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fishery analysis using gradient-dependent optimal interpolation
Authors:Chunling Zhang  Danyang Wang  Zhenfeng Wang
Institution:1.College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China2.Project Management Office of China National Scientific Seafloor Observatory, Tongji University, Shanghai 200092, China
Abstract:The current lack of high-precision information on subsurface seawater is a constraint in fishery research. Basedon Argo temperature and salinity profiles, this study applied the gradient-dependent optimal interpolation to reconstruct daily subsurface oceanic environmental information according to fishery dates and locations. The relationship between subsurface information and matching yellowfin tuna (YFT) in the western and central Pacific Ocean (WCPO) was examined using catch data from January 1, 2008 to August 31, 2017. The seawater temperature and salinity results showed differences of less than ±0.5°C and ±0.01 compared with the truth observations respectively. Statistical analysis revealed that the most suitable temperature for YFT fishery was 28–29°C at the near-surface. The most suitable salinity range for YFT fishery was 34.5–36.0 at depths shallower than 300 m. The suitable upper and lower bounds on the depths of the thermocline were 90–100 m and 300–350 m, respectively. The thermocline characteristics were prominent, with a mean temperature gradient exceeding 0.08°C/m. These results indicate that the profiles constructed by gradient-dependent optimal interpolation were more accurate than those of the nearest profiles adopted.
Keywords:gradient-dependent optimal interpolation  YFT  Argo profiles  WCPO
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《海洋学报(英文版)》浏览原始摘要信息
点击此处可从《海洋学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号